
Speeding Up Secure Computations via Embedded Caching

K. Zhai∗ W. K. Ng† A. R. Herianto‡ S. Han§

Abstract
Most existing work on Privacy-Preserving Data Min-
ing (PPDM) focus on enabling conventional data
mining algorithms with the ability to run in a se-
cure manner in a multi-party setting. Although var-
ious algorithms in data mining have been enhanced
to incorporate secure mechanisms for data privacy
preservation, their computation performance is far
too high to allow them to be practically useful. This
is especially true for those algorithms that make use
of common cryptosystems. In this paper, we address
the efficiency issue of PPDM algorithms by propos-
ing to cache result data that are used more than once
by secure computations. For this to be possible, we
carefully examine the micro steps of secure compu-
tations to identify the repetitive or iterative portions
and reduce the overall computational cost by caching
intermediate results/data. We have applied this to
decision tree induction, association rule mining and
k-means clustering that make use of secure building
blocks such as secure multi-party sum, secure ma-
trix multiplication, and secure inverse of matrix sum.
We show empirically that the computational costs of
secure computations can be reduced without affect-
ing the quality of the data mining result in general.
Our experiments show that the caching technique is
generalizable to common data mining algorithms and
the efficiency of PPDM algorithms can be greatly im-
proved without compromising data privacy.

1 Introduction
PPDM enables conventional data mining algorithms
to be securely performed in a distributed, multi-party
environment with sensitive data. To date, a host
of data mining algorithms have been retrofitted to
incorporate privacy preservation. Generally, there
are two approaches for PPDM algorithm: random-
ization [2] and secure multi-party computations [9].
In this paper, we focus on PPDM algorithms that

∗School of Computer Engineering, Nanyang Technological
University, Singapore, zhai0005@ntu.edu.sg

†School of Computer Engineering, Nanyang Technological
University, Singapore, wkn@acm.org

‡School of Computer Engineering, Nanyang Technological
University, Singapore, andr0027@ntu.edu.sg

§School of Computer Engineering, Nanyang Technological
University, Singapore, hans0004@ntu.edu.sg

make use of secure computations as the outcome
of this category of algorithms does not compro-
mise the correctness of the algorithm to a large ex-
tent. Approaches based on secure multi-party com-
putation are too costly for practical applications.
In the Workshop on Practical Privacy-Preserving
Data Mining (P3DM’08) [10] held in conjunction
with SIAM SDM’08, it has been acknowledged that
improving the efficiency of PPDM is a challenge.
Our focus in this paper is to improve the com-
putational/communication efficiency of PPDM algo-
rithms that make use of secure multi-party compu-
tations.

We observe that in general, many data mining al-
gorithms are iterative in nature and execute certain
data operations repetitively. When such data are dis-
tributed among multiple parties and the data are sen-
sitive, the parties invoke secure computations that in-
volve encryptions/decryptions and network commu-
nications. Hence, the cost of secure computations is
higher than the non-secure version, and it renders
PPDM algorithms less practical for general usage.

We illustrate with two examples. In the Privacy-
Preserving k-means Clustering (PPKC) algorithm
that was proposed by Jagannathan and Wright [8],
one needs to compute the distance between each data
point and the cluster center in each iteration. This
incurrs high computation/communication costs. As
this distance is computed using the Secure Scalar
Product (SSP) protocol, encryption of the input data
can be performed once and reused many times subse-
quently. To achieve this, we could cache the essential
intermediate results to increase the efficiency. From
the experiments performed in this paper, we have
indeed shown that the running time can be dramat-
ically reduced. Moreover, the modified secure proto-
col that incorporates caching is much more scalable
in terms of efficiency.

Similar inefficiency is also observed in the
Privacy-Preserving Association Rule Mining
(PPARM) algorithm by Vaidya and Clifton [13]. At
each iteration of computing the frequency count of
every itemset, the same data vectors that are dis-
tributed among different parties are used. Each time
such vectors need to be used by the parties, several
SSP operations are invoked. As pointed out by Sub-
ramaniam et al. [12], high computational overheads

461 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

have become a major performance bottleneck of SSP
protocols. These repeated computational overheads
reduce the efficiency of PPARM. We performed
a careful micro-inspection of the algorithm and
associated protocols and found ways to embed
caching and avoid redundant computations; thus,
improving the overall efficiency.

Based on the above observations, we want to
improve the efficiency of the PPDM algorithms by
cutting down the computational and communication
overheads incurred by secure computations. To ac-
complish this objective, we identify a set of secure
computations and examine their micro steps to iden-
tify the possibility of embedding caching. Some of
these micro steps involve cryptographic operations on
data. In this paper, we perform a micro-inspection
of the Secure Sum, SSP and Secure Matrix Multi-
plication (SMM) protocols. These secure computa-
tions are used in high-level PPDM algorithms such
as association rule mining, decision tree, and k-means
clustering.

We believe our work contributes to an im-
portant aspect of privacy-preserving data mining—
computational/communication efficiency—that has
largely been ignored by the PPDM community. The
work is part of our larger efforts to develop a prac-
tically feasible PPDM system that supports multi-
ple distributed parties, much like a secure, privacy-
preserving version of Weka that can be plugged into
database systems. Our work generalizes various com-
putational properties used in secure computations,
such as the downward closure property and homo-
morphic encryption, so that computation results are
cachable. We theoretically and experimentally show
that the caching approach is generalizable to other
data mining algorithms.

This paper is organized as follows: The next sec-
tion summarizes a number of existing PPDM algo-
rithms that make use of secure computations. Sec-
tion 3 presents details on several existing secure
computations that include observations of proper-
ties of computations and whether these computa-
tions support caching. We also explain how the
caching technique can be applied to algorithms elab-
orated in Section 2. In Section 4, we analyze the
efficiency improvements of caching and make com-
parisons with conventional data mining algorithms
without caching. We conclude the paper in the final
section.

2 Related Work
In this section, we review some secure building blocks
and conventional data mining algorithms that are
widely used. To date, research in privacy-preserving
data mining has produced a host of secure compu-

tation protocols such as secure multi-party sum [3],
secure comparison [15], secure scalar product [5] for
data mining algorithms such as decision tree [14],
association rule mining [13], k-means clustering [8],
and machine learning algorithms such as fisher dis-
criminant analysis [6], and singular values decompo-
sition [7]. In the following sections, we describe some
specific data mining algorithms. In the next section,
we show how the caching idea can be applied to se-
cure building blocks to increase their efficiency.

2.1 Secure Scalar Product The SSP protocol
is a protocol to compute the scalar product of two
vectors from two parties without any private data
disclosure. It is one of the most important secure
computations protocols that are frequently used in
many PPDM algorithms [7, 6, 8, 13]. One of the
most well known SSP protocols is the one proposed
by Goethals et al. [5] which makes use of a cryptosys-
tem that supports homomorphic addition property:
E(x+y) = E(x)E(y). This property gives rise to the
following:

E(x·y) = E

(
n∑

i=1

(xiyi)

)
=

n∏

i=1

E(xiyi) =
n∏

i=1

E(xi)yi

The algorithm goes as follows: Party A holding
vector x uses the public key to encrypt all elements
and sends them to Party B. Party B computes∏n

i=1(E(xi)yi) and then sends them back to Party
A. Party A decrypts and obtains the scalar product
value.

2.2 Secure Multi-party Sum Yao [15] first in-
troduced the general concept of Secure Multi-party
Computation (SMC). The Secure Multi-party Sum
(SMS) was demonstrated by Clifton et al. [3] to allow
multiple parties to compute the sum of their private
shares together without disclosing the information to
any other party. The main idea of the algorithm
is that the first party uses one random number to
hide its private number, and then send the sum of
private number and random number to the second
party. The second party adds its private number to
the sum received from the first party and then sends
the new sum to third party. After one round, the
final party sends the sum to the first party. The first
party subtracts the random number and obtains the
total sum.

2.3 Privacy-Preserving Cooperative Linear
System of Equations The Privacy-Preserving Co-
operative Linear System of Equations Protocol (PP-
CLSE) was proposed by Du and Atallah [4] to find
the solution of linear systems of equations collabora-
tively. This protocol is applicable to linear regression;

462 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

thus, further applicable to finding classification rules
with disclosure of each party’s private data. The
dataset may be partitioned among parties vertically,
horizontally, arbitrarily or even overlapping. This
protocol works securely and accurately regardless of
the partition scheme adopted by the parties.

As an example, suppose Alice holds an n × n
matrix M1 and an n dimension vector b1. Bob holds
an n × n matrix M2 and an n dimension vector b2.
The protocol is based on the solution to the linear
system of equations P (M1+M2)QQ−1x = P (b1+b2),
which is equivalent to the solution of the system
of equations (M1 + M2)x = b1 + b2. In order to
solve the system of equations, Bob generates two
random matrices P and Q and compute the matrix
M

′
= P (M1 + M2)Q and b

′
= P (b1 + b2) without

disclosing any private information. They both obtain
the solution x consequently.

2.4 Privacy-Preserving Association Rule
Mining Vaidya and Clifton [13] proposed an algo-
rithm for PPARM on vertically partitioned data.
Attribute values in this algorithm are binary where 0
represents the absence and 1 represents the presence
of the attribute value. This algorithm is based on
the conventional Apriori algorithm for multi-party
privacy-preserving Apriori. The cornerstone of
PPARM is to compute the frequency of itemsets. As
an itemset could be partially owned by two parties,
a SSP operation is required.

2.5 Privacy-Preserving Decision Tree Induc-
tion Vaidya and Clifton [14] proposed a Privacy-
Preserving ID3 (PPID3) algorithm for constructing a
decision tree classifier on vertically partitioned data.
The core operation of ID3, as well as the PPID3 al-
gorithm, is to compute the information gain for a
specific set of attributes in order to determine the
best splitting attribute. A SSP computation is also
required to evaluate the entropy on certain attributes
to further build the decision tree.

2.6 Privacy-Preserving k-Means Clustering
Jagannathan and Wright [8] proposed an algorithm
for distributed PPKC on arbitrarily partitioned data
that retrofits the conventional k-means algorithm for
a two-party scenario. The basic idea is to constantly
update every cluster center until a stable state is
achieved. The critical operation is to compute the
Euclidean distance between a data point and the
cluster center; this requires invocation of SSP as
the data point is partially owned by two parties.
Furthermore, the termination state also needs a series
of SSP computations to be performed.

2.7 Secure Matrix Multiplication & Inverse
of Matrix Sum Computation Han and Ng [6]
addressed the secure multiplication of two matrices.
Party A and B each hold a private m×N matrix A
and N × n matrix B respectively. Using of SSP pro-
tocol in Section 2.1, the matrix multiplication could
be easily computed. We will discuss more of this in
Section 3.6. This observation is further applied to
derive a Secure Inverse of Matrix Sum Protocol us-
ing the formula PP−1(A + B)−1 = (A + B)−1. The
overall process involves two SMM operations.

3 Embedding Caching in Data Mining
Algorithms

In this section, we investigate how one can apply
caching to improve the computational efficiency of
PPDM algorithms. We analyze the efficiency im-
provement and memory required to cache data that
are reused repeatedly.

3.1 Secure Multi-party Sum If the same
dataset that is held by multiple parties are repeatedly
used in a data mining algorithm, we can simply cache
the results that were computed before. Although the
result caching of the SMS protocol is rather straight-
forward, it improves the computation when there are
new parties joining the system. The original set of
parties may be conceptually treated as a single party
and the SMS protocol can be applied in the usual
manner to all parties, using the cached results of the
single party.

Analysis The intermediate result caching of the
SMS protocol reduces the amount of network mes-
sages and the computational overheads of each party.
The memory used for caching is relatively small and
thus negligible for each party involved. However, if
only one or a few parties are in the system, it may
not be very secure to use this caching technique. In
this case, we may have to perform the SMS protocol
anew.

3.2 Privacy-Preserving Cooperative Linear
System of Equations Protocol With reference to
the earlier description in Section 2.3, we want to com-
pute the value of P (M1 + M2)Q, where M1 (respec-
tively M2) is held privately by Party A (respectively
B). Matrices P and Q are randomly generated matri-
ces known to Party B only. By decomposing M1 and
M2 into several sub-matrices by both parties, they
exchange information securely using the 1-out-of-N
Oblivious Transfer protocol [11]. The overall result
follows.

As illustrated in Algorithm 1, the result caching
of this protocol can be applied on matrix sequences

463 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

Algorithm 1 Private Evaluation of M ′ =
P (M1 + M2)Q.

Input: Alice has a matrix M1, and Bob has a matrix
M2 and two random matrices P and Q.
Output: M ′ = P (M1 + M2) Q

1: Alice and Bob agree on two large numbers p and
m.

2: Alice generates m random matrices X1, . . . , Xm,
such that M1 = X1 + · · ·+ Xm.

3: Bob generates m random matrices Y1, . . . , Ym,
such that M2 = Y1 + · · ·+ Ym.

4: for each j = 1, . . . , m, Alice and Bob conduct the
following sub-steps: do

5: Alice sends the following sequence to Bob:
(H1, . . . ,Hp) where for a secret 1 6 k 6
p,Hk = Xj ; the rest of the sequence are ran-
dom matrices. k is a secret random number
known only by Alice, namely Bob does not
know the position of Xj in the whole sequence.
Bob could cache the matrix sequence
(H1, . . . ,Hp) for future convenience dur-
ing this process.

6: Bob computes P (Hi + Yj)Q + Rj for each
i = 1, . . . , p, where Rj is a random matrix.

7: Using the 1-out-of-N Oblivious Transfer pro-
tocol, Alice gets back the result of Gj =
P (Hk + Yj)Q+Rj = P (Xj + Yj) Q+Rj . Al-
ice could cache the matrix Gj for future
convenience during this process.

8: end for
9: Bob sends Σm

j=1Rj to Alice.
10: Alice computes M ′ =

Σm
j=1 (P (Xj + Yj) Q + Rj) − Σm

j=1Rj =
P (M1 + M2)Q.

Hjs in Party B and Gjs in Party A. In the case when
the matrix input from B is modified from M2 to M

′
2

in future, B can choose any ` (` ∈ [1,m]) out of
m Yjs for suitable adjustment. The total number `
and the index of matrices can be chosen and selected
arbitrarily, depending on the security and difficulty
level for a party to speculate the information. In
other words, the number of matrices that Party B
choose to modify greatly affects the data privacy
of its own data. The more matrices that Party B
modifies, the lower is the possibility of Party A’s
ability to speculate the information. However, this
result caching scheme is relatively secure for ` > 2 in
general.

For example, suppose B decides to modify the
value of matrices Y1 & Y2 to Y

′
1 & Y

′
2 such that

the equation M
′
2 = Y

′
1 + Y

′
2 + Y3 + · · · + Ym is

satisfied. Then B will only re-compute the sequence

G
′
1 & G

′
2 based on the sequence H1 & H2 cached.

After Party A receives the updated matrix sequences
G
′
1 & G

′
2, it simply obtains the result back with a

secret random number k and performs the rest of the
computations with sequence G3, G4, . . . , Gm cached
in the last iteration. Hence, before applying this
caching approach, we would like to choose the party
that has a higher probability of changing the matrix
input, such as Party B above. In the case of two
parties changing their inputs together, A could also
modify its matrix sequence Xi in same manner as
well.

Analysis The intermediate result caching on this al-
gorithm greatly reduces the computational complex-
ity in terms of the number of oblivious transfers as
well as matrix multiplications. By caching the previ-
ous result, the total number of oblivious transfers is
reduced from m to 2, following the above description.
Also, the number of matrix multiplications carried
out is 2m instead of m2, a significant reduction in
total computation time. This also reduces the over-
all network communication cost.

Memory usage for the caching scheme depends
on the number of matrices and their dimensions. If
we assume m − ` out of m matrices are maintained
in subsequent iterations and every matrix dimension
is d × d, the minimum memory (in bytes) required
for Alice is (m − `) × d2 × b bytes, where b denotes
the number of bytes for storing a single element in a
matrix. As Bob stores a series of matrix sequences,
the overall memory required by him is relatively large
compared to Alice; it requires (m − `) × d2 × b × p
bytes in total.

Data privacy is preserved during caching. Given
that the original protocol is secure, Bob would not be
able to derive any solvable linear system of equations
by changing its matrix to probe Alice’s private ma-
trix. This is true for Alice as well. Both parties agree
on the number of matrices in the sequence that they
are going to modify. Theoretically speaking, more
number of matrices modified leads to better security.
In general, two matrices are more than sufficient to
guarantee the privacy of both parties, as it can be
proved that both parties are not able to establish
any linear system of equations to derive the other
party’s private data. If this algorithm with caching
is executed many times, two parties could come to a
consensus to modify different portions of their matrix
sequence based on the cached results in different it-
erations to avoid the derivation of any solvable linear
system of systems by any party.

Depending on pre-protocol agreement, Party A
may cache

∑m
j=1 Rj if Party B maintains the same

Σm
j=1Rj but with modifications on corresponding

items in the random number series Rj in each it-

464 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

Table 1: Data partitions among 3 parties

TID A1 A2 B1 C1 Class

T1 1 0 1 0 1
T2 1 1 0 1 1
T3 0 1 0 1 1
T4 1 0 1 1 0
T5 1 1 1 1 0

eration. Even though the improvement is minor, it
reduces network communication cost if the network
data transfer overhead is relatively high.

3.3 Privacy-Preserving Association Rule
Mining As described in Section 2.4, multiple
parties performing the Apriori algorithm iteratively
generate frequent itemsets using PPARM protocol.
We observe that intermediate result caching can be
applied throughout the entire algorithm.

Let us elaborate this process using the example
in Table 1. Suppose after the first round of compu-
tations, attributes A1 and A2 are held by Party A,
attribute B1 is held by Party B, and attribute C1 is
held by Party C. In the next iteration, A and B com-
pute the frequency counts of itemsets {A1, B1} and
{A2, B1} collaboratively. Within each iteration, one
party caches the encrypted sequence from the other
party. In this case, B sends the encrypted sequence
of B1 to A, and Party A caches the sequence and use
it throughout the following computations.

Consider the case when the frequency counts of
all itemsets generated in the 2nd iteration are greater
than the support threshold. The three parties will
further proceed to compute the frequency count of
{A1, B1, C1} and {A2, B1, C1} in the next iteration.
Consider the computational process {A1, B1, C1}.
Party C requires the encrypted vector {A2, B1},
which was computed in the previous round. If Party
A or B properly caches the sequence, the overall num-
ber of cryptography computations is greatly reduced.

Analysis The exact number of SSP operations
trimmed by caching is dependent on the number of
frequent itemsets involving a particular input vector
generated by the Apriori algorithm. Let us assume
in one iteration, the number of frequent itemsets in-
volving an input data vector ~V is k. The length of
~V is `. If proper caching is applied, the number of
cryptography computations is reduced from (k + 1)`
to k + `.

To apply this caching scheme, additional mem-
ory blocks for storing completely encrypted vectors
from previous iterations are required. For example,
suppose at iteration i there are c candidate frequent
itemsets satisfying the support threshold. Then at it-

eration i + 1, the overall caching memory required is
c×` in the worst case, where ` denotes the size of each
vector. In practice, many vectors overlapped one an-
other, it is a lot less than c× `. As can be observed,
the memory required is sequentially reducing, as the
number of frequent itemsets is decreasing. As a re-
sult, the system should reserve the necessary amount
of memory for caching according to the number of
single attributes that satisfy the support threshold
during the first iteration, as the number of frequent
itemsets is maximum at that time.

Security is not an issue in this algorithm as long
as the number of tuples is larger than the dimension
of dataset (which is true in real applications) as
both parties are not able to build a linear system
to derive the private data of other parties. This
problem is associated with the original PPARM
algorithm without caching. If the original PPARM
protocol is proved to be secure with input datasets,
applying the caching scheme is secure as we only
cache intermediate results that are proven to be
secure.

3.4 Privacy-Preserving Decision Tree Induc-
tion The part of PPID3 that requires SSP is the
computation of the information gain (i.e., entropy)
in order to determine the best splitting attribute.
Intermediate result caching scheme can be applied
throughout the entire algorithm in a similar man-
ner as PPARM as the input data are all strictly bi-
nary sequences. In this section, we introduce three
caching strategies that improves the efficiency of the
algorithm. Referring to the data in Table 1, suppose
the class attribute is owned by all parties and the
algorithm proceeds to node (B1 = 0). Let n be the
domain size of the class attribute and k be the num-
ber of values of the observed attributes (n and k are
equal to 2 in this case). If we want to compute the
information gain of attribute A1, we evaluate:

Entropy(DB1=0, A1 = 0)

= −PClass=0

|DA1=0| log
PClass=0

|DA1=0| −
PClass=1

|DA1=0| log
PClass=1

|DA1=0|
and

Entropy(DB1=0, A1 = 1)

=− PClass=0

|DA1=1| log
PClass=0

|DA1=1| −
PClass=1

|DA1=1| log
PClass=1

|DA1=1|
where PClass=0 (respectively PClass=1) refers to the
probability of Class = 0 (respectively Class =
1). All the computations of the above entropy
computations are within the domain B1 = 0. To
compute the probability of every possible values of
the class attribute involves a SSP computation. In
total, for every observed attribute, n × k = 4 SSP

465 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

operations involving the same input vector B1 are
carried out. By caching vector B1, we only need to
send this vector once.

Party A has another attribute A2 in addition to
A1. A 2nd caching strategy is applicable when the
system computes the information gain of attribute
A2. As this computation is similar to the process
described above, it also requires the vector on at-
tribute B1. So caching on vector B1 is still applicable
to other attributes for further reducing the crypto-
graphic computational overheads.

A 3rd caching strategy is based on the iterative
characteristic of the ID3 algorithm. It is known that
the SSP protocol executed in each iteration always
depends on its result from the previous iterations
(except the first iteration). Continuing from the
example above, assume that in the second iteration,
we choose attribute A2 as the splitting attribute and
now we are at tree node (B1 = 0, A2 = 0). The
information gain at this point, as stated previously,
is obtained by performing SSP between the B1 vector
owned by B and the A2 vector owned by A. In
this process, if we assume Party B initiates the
SSP protocol, Party A retrieves a vector denoted as
~V = A2 ×B1 in encrypted form.

The next step of the protocol is to compute
the information gain on attribute C1 of party C,
which again requires a SSP computation involving all
three parties. Now, the encrypted vector ~V from the
previous iteration cached by Party A can be treated
as the input to Party C directly. Eventually, after
the protocol is completed, the scalar product of all
three vectors A2 ·B1 · C1 can be computed easily.

Analysis The number of cryptographic computa-
tions reduced via caching depends on characteristics
of the constructed decision tree. However, the im-
provement is predictably significant as almost all re-
peated cryptographic computations are eliminated.
Similar to the caching scheme applied on PPARM al-
gorithm, the security of the overall algorithm is guar-
anteed with this caching scheme.

The memory requirement for caching scheme
on PPID3 would be relatively large compared to
PPARM, as splitting attribute for every ancestor
should be cached in order to implement the third
caching strategy that is to efficiently compute the
information gain for child and sibling node. Suppose
d is the depth of the tree and n represents the number
of data. If we denote k as the approximate size
of an encrypted number (in byte). In total, we
will need memory of d × n × k bytes to implement
the third caching strategy. In addition, for every
iteration to efficiently compute information gain on
every attribute, we also need n×k bytes memory for
implementing the first and second caching strategy.

However, this memory can be released when the
party has not had any attribute to be considered in
that iteration. Therefore, in the worst case scenario
we will require additional (d + 1) × n × k bytes to
implement all caching strategies.

Algorithm 2 Privacy Preserving k-means Cluster-
ing Protocol.

Input: Database D consisting of n data objects
arbitrarily partitioned by Alice and Bob.
Integer k denotes the number of cluster centers.
Output: Assignment of the cluster centers to input

data objects.
1: Randomly select k objects from D as initial

cluster centers µ′1 . . . µ′k.
2: Randomly generate all cluster center shares for

Alice and Bob:
Alice’s share =

(
αA

1 . . . αA
k

)
Bob’s share =

(
αB

1 . . . αB
k

)
3: repeat
4:

(
µA

1 . . . µA
k

)
=

(
αA

1 . . . αA
k

)
(
µB

1 . . . µB
k

)
=

(
αB

1 . . . αB
k

)
5: for each di in D do
6: Compute and assign di to the closest cluster.

Alice (respectively Bob) could cache
the vector sequence (µB

1 . . . µB
k) (respec-

tively (µA
1 . . . µA

k)) for convenience dur-
ing this process.

7: end for
8: Alice and Bob securely recompute random

shares of the centers of the k clusters as(
αA

1 . . . αA
k

)
and

(
αB

1 . . . αB
k

)
respectively.

9: until
(
µA

1 + µB
1 , · · · , µA

k + µB
k

)
is close enough to(

αA
1 + αB

1 , · · · , αA
k + αB

k

)

3.5 Privacy-Preserving k-means Clustering
As described in Section 2.6, intermediate result
caching can be applied. Algorithm 2 illustrates
the PPKC protocol incorporating intermediate re-
sult caching. The core portion of the PPKC algo-
rithm is to compute the distance between a data
point and every cluster center. This process involves
SSP computations among different parties iteratively.
Consider a data point di which is represented by `
distinct attributes di = (xi,1, xi,2, . . . , xi,`). With-
out loss of generality, assume xi,1, . . . , xi,s belong to
Party A and the rest of the `−s attributes belong to
Party B. The equation used to compute the distance
dist (di, µj) between the data input di and j-th clus-

466 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

ter mean µj is as follows:

(dist (di, µj))
2

=
(
xi,1 −

(
µA

j,1 + µB
j,1

))2
+ · · · (xi,` −

(
µA

j,` + µB
j,`

))2

=
∑̀
m=1

x2
i,m +

∑̀
m=1

(
µA

j,m

)2
+

∑̀
m=1

(
µB

j,m

)2

− 2
∑̀
m=1

µA
j,mxi,m − 2

l∑
m=1

xi,mµB
j,m

+ 2
∑̀
m=1

µA
j,mµB

j,m

as µj,t = µA
j,t +µB

j,t, where µA
j,t (respectively µB

j,t) rep-
resents the t-th item of A’s (respectively B’s) share of
the j-th cluster center. The first three terms can be
computed individually by Party A and B but the last
three terms need a SSP protocol between the two par-
ties. Within the same iteration, µA

j,t and µB
j,t are con-

stant until all data inputs have been successfully ex-
amined and assigned. Therefore, they are amenable
to caching. After they exchange the encrypted vec-
tors of all cluster centers at the beginning of each
iteration, the distance between any input data ob-
ject and every cluster center is easily obtained. In
other words, the cryptographic overheads of the last
three items are reduced to two decryption operations
as the result of

∑`
m=1 µA

j,mµB
j,m can be reused within

the same iteration for the same j value.
Caching efficiency involving cluster centers is fur-

ther seen in the termination condition of the algo-
rithm. At the end of every iteration, cluster centers
are updated accordingly. The algorithm terminates
when there are no substantial improvement in reduc-
ing the error in approximation, which is measured in
terms of the Euclidean distance between the original
and updated cluster centers as follows:
(
dist(µold

j , µnew
j)

)2

=
(
dist(µA,old

j + µB,old
j , µA,new

j + µB,old
j)

)2

=
∑̀
m=1

(
µA,new

j,m + µB,new
j,m

)2

+
∑̀
m=1

(
µA,old

j,m + µB,old
j,m

)2

− 2
∑̀
m=1

(
µA,old

j,m + µA,old
j,m

)(
µA,new

j,m + µA,new
j,m

)

=
∑̀
m=1

(
µA,new

j,m + µB,new
j,m

)2

+
∑̀
m=1

(
µA,old

j,m + µB,old
j,m

)2

− 2
∑̀
m=1

µA,old
j,m µA,new

j,m − 2
∑̀
m=1

µB,old
j,m µB,new

j,m

− 2
∑̀
m=1

µA,old
j,m µB,new

j,m − 2
∑̀
m=1

µB,old
j,m µA,new

j,m

and the notation old (respectively new) simply
stands for the original (respectively updated) cluster
center. When result caching is applied, we observe
that only the first item requires a SSP while all oth-
ers items require a decryption instead. As a result,
the total number of cryptographic computation is re-
duced significantly.

Analysis As stated previously, caching is applicable
to the clustering centers. Let us assume the input
dataset to the PPKC system contains n input tuples
distributed over ` number of attributes. At every
iteration, before we assign each data input to the
nearest cluster center, the distances between any two
of them are computed. Thus, there are 3 × n × k
SSP operations in total. To test for convergence, the
distance (also referred as error rate) between the old
and new cluster centers are computed. This requires
4 SSP computations. In total, there are 4 × k SSP
operations. Based on these observations, the total
number of encryptions (Senc) are:

Senc = t× (3× n× k + 4× k)× `

where k represents the total number of clusters and t
is the number of iterations required before it reaches
convergency.

As elaborated above, both parties are required to
cache the encrypted vectors of all other party’s share
of cluster centers. This means that both parties need
to encrypt all their cluster centers of length equals to
k × ` concurrently. Furthermore, after both parties
obtain the new cluster center, they need to compute
the distance between the previous cluster center and
the new cluster center. In this computation, Bob
needs to cache the encrypted value of the partial new
cluster center held by Alice and so does Alice. So, in
the first iteration, we need 2 × k × ` encryptions.
However, this new cluster center will be used again
for the next iteration if the iteration is not the last to
compute the distance between all cluster centers and
data tuples. This is why for the following iterations,
we need only 1 × k × ` encryptions; thus, yielding a
total of (t+1)×k×` encryptions. After intermediate
result caching scheme is applied, the number of
encryption computations is essentially reduced to

Senc = (t + 1)× k × `

. The number of decryptions is ignored as it remains
constant regardless of whether result caching scheme
is applied.

The extra memory required for caching is k × `
vectors at both sites, as both parties use it hold
the share held by the other party for every cluster
center. If one encrypted number requires b bytes,
both parties reserve k × ` × b bytes in advance to

467 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

perform caching. There is no data privacy violation
when caching is used as the private data will always
be kept by the corresponding party. The information
they exchanged is simply the shares of every cluster
center, which is considered relatively less sensitive
data.

3.6 Secure Matrix Multiplication & Inverse
of Matrix Sum Computation To show the gen-
eralizable feature of the proposed technique, we in-
clude the efficient secure matrix multiplication pro-
tocol here as well [7]. And we also explore the secure
inverse of matrix sum computation using embedded
caching technique here.

Let us denote A1, A2, . . . , Am as m row vectors
of A and B1, B2, . . . , Bn as n column vectors of B.
Recall the definition of matrix multiplication:

M = AB

=




A1 ·B1 A1 ·B2 · · · A1 ·Bn

A2 ·B1 A2 ·B2 · · · A2 ·Bn

...
...

. . .
...

Am ·B1 Am ·B2 · · · Am ·Bn




Essentially, every element in M is a scalar product of
two vectors Ai and Bj (i ∈ [1,m], j ∈ [1, n]), which
can be computed using any SSP protocol introduced
in Section 2.1. To compute every element of every
row i (respectively column j), Party B (respectively
A) caches the encrypted vector of Ai (respectively
Bj) sent by Party A (respectively B). The way
we compute the matrix M row-wise or column-
wise depends on the matrix dimension. In order to
increase the efficiency of result caching, we always
choose the loop with less iteration as the outer loop.

Efficient secure matrix multiplication is used to
obtain the inverse of matrix sum as discussed in
Algorithm3. In the secure inverse of matrix sum,
Alice and Bob each hold private d× d matrix A and
B respectively. They want to compute the inverse of
A + B.

In Steps 2 and 5 of this protocol, the multipli-
cation between two matrices is performed. We also
notice that they are over the same matrix P . Thus,
intermediate result caching is applied to P . However,
take note that in these two matrix multiplications, P
is involved in different ways. It is first passed column-
wise and during the second multiplication, every row
of P is exchanged among parties. Clearly, in Step 2,
if we let Party B initiate the SSP mentioned in Sec-
tion 2.1, B will send the entire matrix P in encrypted
form to A before executing this protocol.

Analysis For matrix multiplication, there are n2

encryptions and n decryptions in the computation
process in total at the cryptographic level. This

Algorithm 3 Secure Inverse of Matrix Sum Proto-
col.

Input: Private n × n matrix A and B holding by
Party A and B respectively.
Output: Private n × n matrix Ma and Mb holding

by Party A and B respectively where Ma + Mb =
(A + B)−1.
1: B randomly generates a non-singular n×n matrix

P .
2: A and B jointly perform secure matrix multipli-

cation to compute AP , at end of which, A and B
would hold value Sa and Sb correspondingly such
that Sa + Sb = AP . Party A could cache the
matrix P for future references during this
process.

3: B send Sb + BP to A.
4: A computes Sa + Sb + BP which equals to (A +

B)P , and then compute inverse P−1(A + B)−1.
5: After B and A jointly perform secure matrix

multiplication on P and P−1(A + B)−1, they
would hold value Mb and Ma where Ma + Mb =
PP−1(A + B)−1 = (A + B)−1.

is more effective than the one without caching (n3

encryptions and n decryptions).
The memory used for this caching scheme would

be relative small, simply the size of a n × n matrix.
If we denote k as the memory (in byte) for holding
one encrypted number, the total memory required is
n× n× k bytes.

Data privacy during matrix multiplication is
preserved provided the SSP is secure, as in the
process, Party A only sees an encrypted n×n matrix
from B if we assume Party B initiates the protocol.
For the inverse of matrix sum computation, as it
is built upon several secure building blocks, we can
easily prove that there is no data leakage and privacy
disclose to other parties.

4 Experimental Evaluations
In the following sections, we present experiment re-
sults of incorporating caching. The system is imple-
mented in Java using Netbeans 6.1 and the platform
is a Windows XP system running on an Intel Pentium
4 3.40 GHz processor with 1 GB of main memory.
The sample dataset is the Nurse dataset [1] from the
UCI depository. This dataset has 9 attributes and
12,960 tuples. We perform some preprocessing on
the data, such as converting it to binary data. The
communication network is simulated by passing data
in a self loop. We compared the total number of cryp-
tographic operations required for PPDM algorithms
with and without incorporating caching.

468 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

3.5
x 10

7

Input Tuples (%)

N
o.

 o
f

C
yp

to
gr

ap
hy

 O
ve

rh
ea

ds

Without Caching
With Caching

Figure 1: Cryptographic computations for different
number of tuples in association rule mining.

4.1 Privacy-Preserving Association Rule
Mining Figure 1 illustrates the effects of caching
efficiency versus the number of tuples. The system
first extracts some portions of the entire dataset.
Then the algorithm is run several times with differ-
ent number of input tuples. All of the tuples are
selected randomly according to uniform distribution
to avoid using clustered data for each experiment.
As expected, when the number of data tuples
increases, we have more itemsets that satisfy the
support threshold. Thus, more SSP and crypto-
graphic computations are involved. With caching,
similar behavior appears, but at a much slower rate.
Hence, the overall performance of the PPDM system
greatly improved, especially when the dataset is very
large, as intermediate result caching provides a more
effective way to handle this situation.

Figure 2 elaborates the relationship between
the number of parties in the PPDM versus the
amount of cryptographic computations. We splitted
all attributes in the Nurse dataset randomly among
different parties. The number of SSP operations
does not fully depend on the number of parties,
but more so on the frequent itemsets generated at
every iteration. If the itemsets generated are fully
owned by the same party, we will not need any
SSP computation. As a result, the total number
of cryptographic computations is affected by the
partition scheme that parties choose over the entire
dataset. The behavior of the graph does not show
much pattern. Instead, it fluctuates within a certain
range.

The SSP protocol (Section 2.1) that we use
for this experiment does not require any additional
encryptions when the number of parties increases. As
shown, for the two-party setting, the SSP protocol
needs n+1 encryptions where n is the vector length.
In our case, vector length is the number of tuples
involved in the experiment. In the three-party

2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5
x 10

7

No. of Party

N
o.

 o
f

C
ry

pt
og

ra
ph

y
O

ve
rh

ea
ds

Without Caching
With Caching

Figure 2: Cryptographic computation for different
numbers of party in association rule mining.

scenario, the protocol needs only n + 3 encryptions
in total. Additional encryptions do not affect the
overall performance if n is substantially large.

Still, when caching is applied, we observe major
improvement in the overall processing speed of the
PPDM system. The total number of cryptographic
computations after we apply caching is about 1

10 of
the original protocol.

In Figure 3, we address the impact to caching
efficiency under different support thresholds. In this
experiment, we choose different threshold percent-
ages in the range between 1% and 25%. The support
threshold is defined as the number of total tuples in-
volved in the experiment times the percentage. We
randomly choose 6,473 tuples from the Nurse dataset
as the input data. In general, there is a negative cor-
relation between the support threshold value and to-
tal number of cryptographic computations. A higher
support threshold essentially reduces the number of
frequent itemsets. Hence, it reduces the number of
iterations and SSP computations required.

Meanwhile, as we can observe from the figure,
the intermediate result caching scheme indeed greatly
improves system efficiency. This is especially true
when the support threshold is relatively low, while
a comparably larger amount of SSP computations is
required.

4.2 Privacy-Preserving Decision Tree In Fig-
ure 4, we illustrate the relationship between the over-
all number of cryptographic computations and the
number of input tuples. Like experiment on PPARM,
the system feeds the program with only a portion of
the total Nurse dataset each time; thus, simulating
different number of input tuples to the system. As
observed, an increase in the total number of input tu-
ples eventually leads to an increase in the complexity
of constructing a decision tree classifier. However, as
we can see from the diagram, caching shows better

469 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

0 5 10 15 20 25
0

2

4

6

8

10

12
x 10

7

Threshold (%)

N
o.

 o
f

C
ry

pt
og

ra
ph

y
O

ve
rh

ea
ds

Without Caching
With Caching

Figure 3: Cryptographic computations under differ-
ent support thresholds for association rule mining.

0 20 40 60 80 100
0

0.5

1

1.5

2
x 10

8

Input Tuples (%)

N
o.

 o
f

C
ry

pt
og

ra
ph

y
O

ve
rh

ea
ds

Without Caching
With Caching

Figure 4: Cryptographic computations for different
number of tuples in decision tree induction.

performance compared to the original protocol with-
out caching irrespective of the number of tuples to
the system. Since intermediate result caching mainly
focuses on the reduction of the number of crypto-
graphic computations, the more SSP operations are
involved, the better is the caching scheme perfor-
mance. In fact, experimental results indicate that
caching technique works a lot better when the input
dataset is large.

PPID3 algorithm is able to handle multi-party
situations as well. The total number of parties
involved in building a decision tree classifier is taken
into account in Figure 5. In this figure, even with
different number of parties, the outputs are quite
stable with only minor fluctuations in both curves
representing the cases with and without caching
respectively. A comparison of the two results shows
that the overall system performance is improved
tremendously with intermediate result caching.

4.3 Privacy-Preserving k-Means Clustering
in Arbitrarily Partitioned Data Unlike PPARM
or PPID3 where classification execute on binary data

2 3 4 5 6 7 8
0

2

4

6

8

10

12
x 10

7

No. of Party

N
o.

 o
f

C
ry

pt
og

ra
ph

y
O

ve
rh

ea
ds

Without Caching
With Caching

Figure 5: Cryptographic computations for different
number of parties in decision tree induction.

inputs, PPKC performs on any real-valued data. We
use the Nurse dataset as input. The total number
of cryptographic computations can be calculated
explicitly. Hence, the efficiency of intermediate result
caching is easy to observe.

Experimental results on the PPKC algorithm
provides supporting evidence on previous computa-
tions. In Figure 6, we illustrate the impact of the
number of cryptographic computations under differ-
ent number of input tuples. Figure 7 shows the rela-
tionship between the number of clusters and the total
number of cryptographic computation required. The
diagram in Figure 8 shows the comparison between
different number of cryptographic computations ac-
cording to the different number of iterations in both
intermediate result caching scheme applied and origi-
nal algorithm. All three graphs indicate the expected
linear outputs irrespective of the underlying input pa-
rameter that fit the previous computation formulas.
After result caching scheme is applied, the number
of decryptions is the same as the original algorithm.
However, the total number of encryptions is reduced
significantly. As a result, the larger the input dataset
is, the more efficient and effective is the intermediate
result caching scheme. In practical applications, if
we have an extremely large dataset, the caching tech-
nique greatly improves the overall processing speed
of the system.

4.4 Secure Matrix Multiplication We imple-
mented the SMM protocol to illustrate caching ef-
ficiency in C# language under Microsoft Visual Stu-
dio 2005 environment. The experiments are tested on
Windows XP operating system with Intel Pentium 4
3.40GHz and 3GB memory. The input matrices to
the system are of m×N and N ×n dimension corre-
spondingly. The values are generated randomly and
distributed uniformly in a mathematical field F.

Figure 9 illustrates the effect of total processing

470 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

0 20 40 60 80 100
0

2

4

6

8

10

12
x 10

9

Input Tuples (%)

N
o.

 o
f

C
ry

pt
og

ra
ph

y
O

ve
rh

ea
ds

WithoutCaching
WithCaching

Figure 6: Cryptographic computations for different
number of tuples in k-means clustering.

0 5 10 15 20
0

1

2

3

4

5
x 10

10

No. of Cluster

N
o.

 o
f

C
ry

pt
og

ra
ph

y
O

ve
rh

ea
ds

Without Caching
With Caching

Figure 7: Cryptographic computations for different
number of clusters for k-means clustering.

0 50 100 150 200
0

2

4

6

8

10

12
x 10

9

No. of Iteration

N
o.

 o
f

C
ry

pt
og

ra
ph

y
O

ve
rh

ea
ds

Without Caching
With Caching

Figure 8: Cryptographic computations under differ-
ent number of iterations for k-means clustering.

time with respect to different dimensions of input
matrices. With result caching, the overall system
performance is improved greatly. This is especially
true when input matrices are large.

0 200 400 600 800 1000
0

2000

4000

6000

8000

10000

12000

Value of n (m=10, N=10)

C
om

pu
ta

ti
on

 T
im

e
(M

ill
is

ec
on

d)

Without Caching
With Caching

Figure 9: Processing time for different input matrix
dimension n in secure matrix multiplication.

0 200 400 600 800 1000
0

2000

4000

6000

8000

10000

Value of N (m=10, n=10)

C
om

pu
ta

ti
on

 T
im

e
(M

ill
is

ec
on

d)

Without Caching
With Caching

Figure 10: Processing time for different input matrix
dimension N in secure matrix multiplication.

5 Conclusions
Secure computation is the most critical part of
PPDM algorithms. Although it preserves the pri-
vacy of each party’s data, it also incurs the majority
of computational cost of algorithm execution. In this
paper, we addressed the inefficiency issues in exist-
ing PPDM algorithm such as PPARM, PPID3, and
PPKC and proposed an approach to resolve ineffi-
ciency using result caching.

We have implemented and experimentally eval-
uated our approach in PPDM algorithms and com-
pared its performance with PPDM algorithms that
do not incorporate caching. All of our experimental
results show very high degree of reduction in number
of cryptographic computations incurred.

References

[1] UCI machine learning repository: Nursery data set
http://archive.ics.uci.edu/ml/datasets/nursery.

[2] R. Agrawal and R. Srikant. Privacy-preserving data
mining. In Proceedings of the ACM international
Conference on Management of Data, pages 439–450,
Dallas, Texas, United States, 2000.

471 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

[3] C. Clifton, M. Kantarcioglu, J. Vaidya, X. Lin, and
M. Y. Zhu. Tools for privacy preserving distributed
data mining. In SIGKDD Explorations, 4(2):28–34,
December 2002.

[4] W. Du and M. J. Atallah. Privacy-preserving
cooperative scientific computations. In Proceedings
of the 14th IEEE workshop on Computer Security
Foundations, page 273, Washington, DC, USA,
2001. IEEE Computer Society.

[5] B. Goethals, S. Laur, H. Lipmaa, and
T. Mielikainen. On private scalar product
computation for privacy-preserving data mining. In
Proceedings of the 7th Annual International Con-
ference in Information Security and Cryptology,
pages 104–120, Seoul, Korea, December 2–3 2004.

[6] S. Han and W. K. Ng. Privacy-preserving linear
fisher discriminant analysis. In Proceedings of the
12th Pacific-Asia Conference on Knowledge Discov-
ery and Data Mining, Osaka, Japan, May 2008.

[7] S. Han, W. K. Ng, and P. Yu. Privacy-preserving
singular value decomposition. In Proceedings of
the 25th IEEE International Conference on Data
Engineering, Shanghai, China, April 2009.

[8] G. Jagannathan and R. N. Wright. Privacy-
preserving distributed k-means clustering over ar-
bitrarily partitioned data. In Proceedings of the 8th
ACM International Conference on Knowledge Dis-
covery in Data Mining, pages 593–599, Chicago, Illi-
nois, USA, 2005.

[9] Y. Lindell and B. Pinkas. Privacy preserving data
mining. In Advances in Cryptology, volume 1880
of Lecture Notes in Computer Science, pages 36–53.
Springer-Verlag, 2000.

[10] K. Liu and R. Wolff. International workshop on
practical privacy-preserving data mining held in
conjunction with siam sdm’08, 2008.

[11] M. Naor and B. Pinkas. Oblivious transfer and
polynomial evaluation. In Proceedings of the Annual
ACM Symposium on Theory of Computing, pages
245–254, Atlanta, Georgia, United States, 1999.

[12] H. Subramaniam, R. Wright, and Z. Yang. Experi-
mental analysis of a privacy-preserving scalar prod-
uct protocol. In Proceedings of the Workshop on
Secure Data Management (held in conjunction with
VLDB’04), 2004.

[13] J. Vaidya and C. Clifton. Privacy preserving as-
sociation rule mining in vertically partitioned data.
In Proceedings of the 8th ACM International Con-
ference on Knowledge Discovery and Data Mining,
pages 639–644, Edmonton, Alberta, Canada, July
23-26 2002.

[14] J. Vaidya and C. Clifton. Privacy-preserving deci-
sion trees over vertically partitioned data. In Pro-
ceedings of the 19th Annual IFIP WG 11.3 Work-
ing Conference on Data and Applications Security,
Storrs, Connecticut, 2005. Springer.

[15] A. C. Yao. How to generate and exchange secrets.
In Proceedings of the Annual IEEE Symposium on
Foundations of Computer Science, pages 162–167,
1986.

472 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

