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ABSTRACT

We propose a novel framework to adaptively adjust the dropout rates for the deep
neural network based on a Rademacher complexity bound. The state-of-the-art
deep learning algorithms impose dropout strategy to prevent feature co-adaptation.
However, choosing the dropout rates remains an art of heuristics or relies on
empirical grid-search over some hyperparameter space. In this work, we show the
network Rademacher complexity is bounded by a function related to the dropout
rate vectors and the weight coefficient matrices. Subsequently, we impose this
bound as a regularizer and provide a theoretical justified way to trade-off between
model complexity and representation power. Therefore, the dropout rates and
the empirical loss are unified into the same objective function, which is then
optimized using the block coordinate descent algorithm. We discover that the
adaptively adjusted dropout rates converge to some interesting distributions that
reveal meaningful patterns. Experiments on the task of image and document
classification also show our method achieves better performance compared to the
state-of-the-art dropout algorithms.

1 INTRODUCTION

Dropout training (Srivastava et al., 2014) has been proposed to regularize deep neural networks for
classification tasks. It has been shown to work well in reducing co-adaptation of neurons—and hence,
preventing model overfitting. The idea of dropout is to stochastically set a neuron’s output to zero
according to Bernoulli random variables. It has been a crucial component in the winning solution
to visual object recognition on ImageNet (Krizhevsky et al., 2012). Ever since, there have been
many follow-ups on novel learning algorithms (Goodfellow et al., 2013; Baldi & Sadowski, 2013),
regularization techniques (Wager et al., 2013), and fast approximations (Wang & Manning, 2013).

However, the classical dropout model has a few limitations. First, the model requires to specify
the retain rates, i.e., the probabilities of keeping a neuron’s output, a priori to model training.
Subsequently, these retain rates are kept fixed throughout the training process thereafter. It is often
not clear how to choose the retain rates in an optimal way. They are usually set via grid-search over
hyper-parameter space or simply according to some rule-of-thumb. Another limitation is that all
neurons in the same layer share the same retain rate. This exponentially reduces the search space of
hyper-parameter optimization. For example, Srivastava et al. (2014) use a fixed retain probability
throughout training for all dropout variables in each layer.

In this paper, we propose a novel regularizer based on the Rademacher complexity of a neural
network (Shalev-Shwartz & Ben-David, 2014). Without loss of generality, we use multilayer
perceptron with dropout as our example and prove its Rademacher complexity is bounded by a term
related to the dropout probabilities. This enables us to explicitly incorporate the model complexity
term as a regularizer into the objective function.

This Rademacher complexity bound regularizer provides us a lot of flexibility and advantage in
modeling and optimization. First, it combines the model complexity and the loss function in an
unified objective. This offers a viable way to trade-off the model complexity and representation
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power through the regularizer weighting coefficient. Second, since this bound is a function of dropout
probabilities, we are able to incorporate them explictly into the computation graph of the optimization
procedure. We can then adaptively optimize the objective and adjust the dropout probabilities
throughout training in a way similar to ridge regression and the lasso (Hastie et al., 2009). Third, our
proposed regularizer assumes a neuron-wise dropout manner and models different neurons to have
different retain rates during the optimization. Our empirical results demonstrate interesting trend on
the changes in histograms of dropout probabilities for both hidden and input layers. We also discover
that the distribution over retain rates upon model convergence reveals meaningful pattern on the input
features.

To the best of our knowledge, this is the first ever effort of using the Rademacher complexity bound
to adaptively adjust the dropout probabilities for the neural networks. We organize the rest of the
paper as following. Section 2 reviews some past approaches well aligned with our motivation, and
highlight some major difference to our proposed approach. We subsequently detail our proposed
approach in Section 3. In Section 4, we present our thorough empirical evaluations on the task of
image and document classification on several benchmark datasets. Finally, Section 5 concludes this
paper and summarizes some possible future research ideas.

2 RELATED WORKS

There are several prior works well aligned with our motivation and addressing similar problems, but
significantly different from our method. For example, the standout network (Ba & Frey, 2013) extends
dropout network into a complex network structure, by interleaving a binary belief network with a
regular deep neural network. The binary belief network controls the dropout rate for each neuron,
backward propagates classification error and adaptively adjust according to training data. Zhuo et al.
(2015) realize the dropout training via the concept of Bayesian feature noising during neural network
learning. They further extend the model to incorporate either dimension-specific or group-specific
noise and propose framework to adaptively learn the dropout rates. Li et al. (2016) sample dropout
from a multinomial distribution on neuron basis and establish a risk bound for stochastic optimization.
They then propose the evolutional dropout model to adaptively update the sampling probabilities
during training time.

In addition to these approaches, one other family of solution is via the concept of regularizer. Wang
& Manning (2013) propose fast approximation methods to marginalize the dropout layer and show
that the classical dropout can be approximated by a Gaussian distribution. Later, Wager et al. (2013)
show that the dropout training on generalized linear models can be viewed as a form of adaptive
regularization technique. Gal & Ghahramani (2016) develop a new theoretical framework casting
dropout training as approximation to Bayesian inference in deep Gaussian processes. It also provides
a theoretical justification and formulates dropout into a special case of Bayesian regularization. In the
mean time, Maeda (2014) discusses a Bayesian perspective on dropout focusing on the binary variant,
and also demonstrate encourage experimental results. Generalized dropout (Srinivas & Babu, 2016)
further unifies the dropout model into a rich family of regularizers and propose a Bayesian approach
to update dropout rates.

One popular method along with these works is the variational dropout method (Kingma et al.,
2015), which provides an elegant interpretation of Gaussian dropout as a special case of Bayesian
regularization. It also proposes a Bayesian inference method using a local reparameterization
technique and translates uncertainty of global parameters into local noise. Hence, it allows inference
on the parameterized Bayesian posteriors for dropout rates. This allows us to adaptively tune
individual dropout rates on layer, neuron or even weight level in a Bayesian manner. Recently,
Molchanov et al. (2017) extend the variational dropout method with a tighter approximation which
subsequently produce more sparse dropout rates. However, these models are fundamentally different
than our proposed approach. They directly operates on the Gaussian approximation of dropout models
rather than the canonical multiplicative dropout model, whereas our proposed method directly bounds
the model complexity of classical dropout model.

Meanwhile, the model complexity and the generalization capability of deep neural networks have
been well studied in theoretical perspective. Wan et al. (2013) prove the generalization bound for the
DropConnect neural networks—a weight-wise variant of dropout model. Later, Gao & Zhou (2016)
extend the work and derive a Rademacher complexity bound for deep neural networks with dropout.
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Another perspective to the model generalization is the PAC-Bayes bound proposed by McAllester
(2013). The PAC-Bayes method assumes probability measures on the hypothesis space, and gives
generalization guarantee over all possible “priors”. McAllester (2013) give a PAC-Bayes bound for
linear predictors with dropout. In practise, the PAC-Bayes method has the potential to give a even
tigher generalization bound. The bound we prove in this paper is based on traditional techniques
using Rademacher complexity. It is a first step towards understanding how the dropout method works,
and we would like to extend it to the PAC-Bayes paradigm in the future.

These works provide a theoretical guarantee and mathematical justification on the effectiveness of
dropout method in general. However, they all assume that all input and hidden layers have the same
dropout rates. Thus their bound can not be applied to our algorithm.

3 RADEMACHER COMPLEXITY REGULARIZATION

We would like to focus on the classification problem and use multilayer perceptron as our example.
However, note that the similar idea could be easily extended to general feedforward networks. Let
us assume a labeled dataset S = {(xi,yi)|i ∈ {1, 2, . . . , n},xi ∈ Rd,yi ∈ {0, 1}k}, where xi is
the feature of the ith sample, yi is the one-hot class label for the ith sample, and k is the number of
classes in prediction. Without loss of generality, an L-layer multilayer perceptron with dropout can
be modeled as a series of recursive function compositions. Let kl be the number of neurons of the
lth layer. In particular, the first layer takes sample features as input, i.e., k0 = d, and the last layer
outputs the prediction, i.e., kL = k.

We denote Wl ∈ Rkl−1×kl as the linear coefficient matrix from the (l− 1)th layer to the lth layer, and
Wl

i be the ith column of Wl. For dropout, we denote θl ∈ [0, 1]k
l

as the vector of retain rates for the
lth layer. We also define rl ∈ {0, 1}kl as a binary vector formed by concatenating kl independent
Bernoulli dropout random variables, i.e., rlj ∼ Bernoulli(θlj). To simplify our notation, we further
refer W:l = {W1, . . . ,Wl}, r:l = {r0, . . . , rl}, θ:l = {θ0, . . . ,θl}, W = W:L, r = r:(L−1), and
θ = θ:(L−1).

For an input sample feature vector x ∈ Rd, the function before the activation of the jth neuron in the
lth layer f lj is

f lj(x;W:l, r:l) =
∑
tW

l
tjr

l−1
t φ(f l−1t (x;W:l−1, r:l−1)),∀l ∈ {2, 3, . . . , L}

where φ : R→ R+ is the rectified linear activation function (Nair & Hinton, 2010, ReLU). In vector
form, if we denote � as the Hadamard product, we could write the output of the lth layer as

f l(x;W, r) =
(
rl−1 � φ(f l−1(x;W:l−1, r:l−1))

)
Wl.

Without loss of generality, we also apply Bernoulli dropout to the input layer parameter θ0 ∈ Rd,
i.e., f1(x;W, r0) = (r0 � x)W1. Note that the output of the neural network fL(x;W, r) ∈ Rk is
a random vector due to the Bernoulli random variables r. We use the expected value of fL(x;W, r)
as the deterministic output

fL(x;W,θ) = Er[fL(x;W, r)]. (1)

The final predictions are made through a softmax function, and we use the cross-entropy loss as our
optimization objective. To simplify our analysis, we follow Wan et al. (2013) and reformulate the
cross-entropy loss on top of the softmax into a single logistic function

loss(fL(x;W,θ),y) = −
∑
j yj log e

fL
j

(x;W,θ)∑
j e

fL
j

(x;W,θ)
.

3.1 EMPIRICAL RADEMACHER COMPLEXITY

Definition The empirical Rademacher complexity of function class F with respect to the sample S is

RS(F) =
1

n
E{σi}

[
sup
f∈F

n∑
i=1

σif(si))

]
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Define loss ◦ fL as the composition of the logistic loss function loss and the neural function fL
returned from the Lth (last) layer, i.e.,

loss ◦ fL = {(x,y)→ loss(fL(x;W,θ),y)}.

Theorem 3.1. Let X ∈ Rn×d be the sample matrix with the ith row xi ∈ Rd, p ≥ 1,
1
p + 1

q = 1. If the p-norm of every column of Wl is bounded by a constant Bl, denote
W =

{
W | maxj ‖Wl

j‖p ≤ Bl,∀l ∈ {1, 2, . . . , L}
}

, given θ, the empirical Rademacher com-
plexity of the loss for the dropout neural network defined above is bounded by

RS(loss ◦ fL) = 1
nE{σi}

[
supW∈W

∑n
i=1 σiloss(f

L(xi;W,θ),yi)
]

≤ k2L
√

2 log(2d)
n ‖X‖max

(
ΠL
l=1B

l‖θl−1‖1/q1

)
,

where k is the number of classes to predict, θl is the kl-dimensional vector of Bernoulli parameters
for the dropout random variables in the lth layer, σis are i.i.d. Rademacher random variables, and
‖ · ‖max is the matrix max norm defined as ‖A‖max = maxij |Aij |.
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Figure 1: Empirical cross-entropy loss (left) and Rademacher
regularizer (right) as a function of retain rates. We observe
that the empirical loss and Rademacher regularizer change
roughly in a monotonic way as a function of retain rates
on training data. The experiments are evaluated on MNIST
dataset with a hidden layer of 128 ReLU units. We apply
dropout on the hidden layer only, and keep the retain rates
fixed throughout training. We optimize with the empirical
loss Loss(S, fL(·;W,θ)), i.e., without any regularizer for
200 epochs with minibatch fo 100. All Rademacher regu-
larizers are computed after every epoch in post-hoc manner,
under the settings of p = ∞, q = 1. We plot the samples
from last 20 epochs under each settings, with initial learning
rate of 0.01, and decay by half every 40 epochs.

Please refer to the appendix for the
proof.

Theorem 3.1 suggests that the empir-
ical Rademacher complexity of the
dropout network specified in this pa-
per is related to several terms in a mul-
tiplicative way:

i: p-norms of the coefficients:
maxj ‖Wl

j‖p. Note that in
(Srivastava et al., 2014), 2 norms
of the coefficients are already
used as regularizers in the
experimental comparison

ii: 1-norms of the retain rates θl

iii: sample related metrics: dimen-
sion of the sample d, the number
of samples n, and maximum en-
tries in the samples X

iv: the number of classes in the pre-
diction k

An the extreme case is, if the retain
rates θl for one layer are all zeros,
then the upper bound above is tight,
since in this case the network is sim-
ply doing random guess for predic-
tions. Similarly when the coefficients
in one layer are all zeros, the bound is
also tight. In both cases the features
from the samples are not even used in
the prediction due to either zero retain
rates or zero coefficients.

3.2 REGULARIZE WITH RADEMACHER COMPLEXITY

We have shown that the Rademacher complexity of a neural network is bounded by a function of the
dropout rates, i.e., Bernoulli parameters θ. This makes it possible to unify the dropout rates and the
network coefficients W in one objective. By imposing our upper bound of Rademacher complexity
to the loss function as a regularizer, we have

Obj(W,θ) = Loss(S, fL(·;W,θ)) + λReg(S,W,θ) (2)
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where the variable λ ∈ R+ is a weighting coefficient to trade off the training loss and the generaliza-
tion capability. The empirical loss Loss(S, fL(·;W,θ)) and regularizer function Reg(S,W,θ) are
defined as

Loss(S, fL(·;W,θ)) = 1
n

∑
(xi,yi)∈S loss(f

L(xi;W,θ),yi),

Reg(S,W,θ) = k2L
√

log d
n ‖X‖max

(
ΠL
l=1‖θl−1‖

1/q
1 maxj ‖Wl

j‖p
)
,

where Wl
j is the jth column of Wl and θl is the retain rate vector for the lth layer. The variable k is

the number of classes to predict and X ∈ Rn×d is the sample matrix.

In addition to the Rademacher regularizer Reg(S,W,θ), the empirical loss term Loss(S, fL(·;W,θ))
also depends on the dropout Bernoulli parameters θ. Intuitively, when θ becomes smaller, the loss
term Loss(S, fL(·;W,θ)) becomes larger, since the model is less capable to fit the training samples
(i.e., less representation power), the empirical Rademacher complexity bound becomes smaller (i.e.,
more generalizable), and vice versa. Figure 1 plots the cross-entropy loss and empirical Rademacher
p = ∞, q = 1 regularizer upon model convergence under different settings of retain rates. In the
extreme case, when all θlj become zeros, the model always makes random guess for prediction,
leading to a large fitness error Loss(S, fL(·;W,θ)), and the Rademacher complexity RS(loss ◦ fL)
approaches 0.1

3.3 OPTIMIZE DROPOUT RATES
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Figure 2: Changes in the true objectives in “stochastic” mode
and their “deterministic” approximations against training
epochs under different network architectures. The optimiza-
tion objectives are reported on the training set of MNIST
dataset, with Rademacher regularizer. We use minibatch size
of 100, initial learning rate of 0.01, and decay it by half every
200 epochs. The network structures we evaluated includes 1
hidden layer with 1024 units, 2 hidden layers with 800 units
each, and 3 hidden layers with 1024 units each. The regular-
izer weights are set to 1e−3, 1e−4 and 1e−5 respectively. All
neurons are ReLU units. Empirically, we find that optimizing
the “deterministic” objective leads to similar improvements
on the true “stochastic” objective as in Eqn. (2).

We now incorporate the Bernoulli pa-
rameters θ into the optimization objec-
tive as in Eqn. (2), i.e., the objective is
a function of both weight coefficient
matrices W and retain rate vectors
θ. In particular, the model parameters
and the dropout rates are optimized
using a block coordinate descent algo-
rithm. We start with an initial setting
of W and θ, and optimize W and θ
in an alternating fashion.

For the retain rate probability θ, due
to the stochastic nature of dropout
framework, it is very expensive to
compute the exact objective value.
For each training instance, we may
have to exhaustively enumerate all
possible dropout configurations in a
combinatorial search space and com-
pute its expectation of all the objective
functions. One possbile approxima-
tion is to iteratively taking large num-
ber of samples from Bernoulli distri-
butions of all layers for any input data
and then compute the average objec-
tive. Even though, the computational
complexity can be exponential as to
the number of training data. There-
fore, in our case, during the optimiza-
tion of θ, we use the expected value
of the Bernoulli dropout variables to
rescale the output from each layer, to
approximate the true objective fL(x;W,θ). It significantly speeds up the forward propagation

1To balance out the regularizer and the loss function so that they scale similarly as the sample size and
internal layer nodes grow, we add some scaling factors to λ, which is discussed in Section 4.
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process, as we do not need to iteratively sample the dropout variables for each training example.
Essentially, it makes the layer output deterministic and the underlying network operates as if without
dropout, which is exactly the same as the approximation used in (Srivastava et al., 2014) during
testing time.

Note that using the expected value of Bernoulli dropout random variables to rescale a layer output
is an approximation to the true objective fL(x;W,θ). In practice, we find such “deterministic”
approximation exhibits similar behavior during model optimization, and hence does not deviate or
alter the performance, but significantly improves the running time. Figure 2 shows the true objective
in “stochastic” mode and its “deterministic” approximation on the training set during optimization
process under different network architectures. Empirically, we observe that the true optimization
objective in stochastic mode as in Eqn. (2) decreases consistently if we use the expected value of the
Bernoulli dropout random variable to approximate the sampling process.

4 EXPERIMENTS
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Figure 3: Changes in retain rates with Rademacher regularization on MNIST dataset. Top-Left:
changes in retain rate histograms for input layer (784 gray scale pixels) through training. The retain
rates get diffused over time, and only a handful of pixels have retain rates close to 1. Top-Right:
changes in retain rate histograms for hidden layer (1024 ReLU units) through training process.
Bottom-Left: sample images from MNIST dataset. Bottom-Right: retain rates for corresponding input
pixels upon model convergence. The surrounding pixels of input image yield smaller retain rates
(corresponds to the dark background area), and the center ones have significantly larger retain rates
(corresponds to the number pixels).

We apply our proposed approach with different network architectures, on the task of image and text
classification using several public available benchmark datasets. All hidden neurons and convolutional
filters are rectified linear units (Nair & Hinton, 2010, ReLU). We found that our approach achieves
superior performance against strong baselines on all datasets. For all datasets, we hold out 20% of
the training data as validation set for parameter tuning and model selection. After then, we combine
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both of these two sets to train the model and report the classification error rate on test set. We
optimize categorical cross-entropy loss on predicted class labels with Rademacher regularization. In
the context of this paper, we specifically refer the Rademacher regularizer to the case of p =∞, q = 1
unless stated otherwise. We update the parameters using mini-batch stochastic gradient descent with
Nesterov momentum of 0.95 (Sutskever et al., 2013).

For Rademacher complexity term, we perform a grid search on the regularization weight
λ ∈ {0.05, 0.01, 0.005, 0.001, 1e−4, 1e−5}, and update the dropout rates after every I ∈
{1, 5, 10, 50, 100} minibatches. For variational dropout method (Kingma et al., 2015, VARDROP),
we examine the both Type-A and Type-B variational dropout with per-layer, per-neuron or per-weight
adaptive dropout rate. We found the neuron-wise adaptive regularization on Type-A variational
dropout layer often reports the best performance under most cases. We also perform a grid search
on the regularization noise parameter in {0.1, 0.01, 0.001, 1e−4, 1e−5, 1e−6}. For sparse variational
dropout method (Molchanov et al., 2017, SPARSEVARDROP), we find the model is much more
sensitive to regularization weights, and often gets diverged. We examine different regularization
weight in {1e−3, 1e−4, 1e−5}. We follow similar weight adjustment scheme and scale it up by 10
after first {100, 200, 300} epochs, then further scale up by 5 and 2 after same number of epoch.

Scales of Regularization In practice, we want to stablize regularization term within some man-
agable variance, so its value does not vary significantly upon difference structure of the underlying
neural networks. Hence, we design some heuristics to scale the regularizer to offset the multipler
effects raised from network structure. For instance, recall the neural network defined in Section 3, the
Rademacher complexity regularizer with p =∞, q = 1 after scaling is

k2L
√

log d

n
max
i
‖xi‖∞

(
ΠL
l=1‖Wl‖max‖θl−1‖1

√
kl + kl−1

kl

)
. (3)

where Wl
j is the jth column of the weight coefficient matrix Wl and θl is the retain rate vector

for the lth layer. The variable k is the number of classes to predict and X ∈ Rn×d is the sample
matrix. Similarly, we could rescale the Rademacher complexity regularizers under other settings of
p = 2, q = 2. Please refer to the appendix for the scaled Rademacher complexity bound regularizers
and detailed derivations.

4.1 MNIST

MNIST dataset is a collection of 28 × 28 pixel hand-written digit images in grayscale, containing
60K for training and 10K for testing. The task is to classify the images into 10 digit classes from 0
to 9. All images are flattened into 784 dimension vectors, and all pixel values are rescaled to gray
scale. We examine several different network structures, including architectures of 1 hiddel layer with
1024 units, 2 hidden layers with 800 neurons each, as well as 3 hidden layers with 1024 units each.

Model 1024 800× 2 1024× 3
Multilayer Perceptron 1.69 1.62 1.61
+ Dropout 1.22 1.28 1.25

+ VARDROP 1.20 1.16 1.07
+ SPARSEVARDROP 1.34 1.30 1.27
+ Rademacher 1.11 1.08 0.95

Table 1: Classification error on MNIST dataset.

Table 1 compares the performance of
our proposed models against other tech-
niques. We use a learning rate of
0.01 and decay it by 0.5 after every
{300, 400, 500} epochs. We let all mod-
els run sufficiently long with 100K up-
dates. For all models, we also explore
different initialization for neuron retain-
ing rates, including {0.8, 1.0} for input
layers, {0.5, 0.8, 1.0} for hidden layers. In practice, we find initializing the retaining rates to 0.8 for
input layer and 0.5 for hidden layer yields better performance for all models, except for SPARSE-
VARDROP model, initializing retaining rate to 1.0 for input layer seems to give better result.

Figure 3 illustrates the changes in retain rates for both input and hidden layers under Rademacher
regularization with 1e−4 regularization weight. The network contains one hidden layer of 1024 ReLU
units. The retain rates were initialized to 0.8 for input layer and 0.5 for hidden layer. The learning
rate is 0.01 and decayed by half after every 200 epochs. We observe the retain rates for all layers
are diffused throughout training process, and finally converged towards a bimodal distribution for
input layer and a unimodal distribution for hidden layer. We also notice that the retain rates for input
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layer upon model convergence demonstrate interesting feature pattern of the dataset. For example,
the pixels in surrounding margins yield smaller retain rates, and the center pixels often have larger
retain rates. This is because the digits in MNIST dataset are often centered in the image, hence all
the surrounding pixels are not predictive at all when classifying an instance. This demonstrates that
our proposed method is able to dynamically determine if an input signal is informational or not, and
subsequently gives higher retain rate if it is, otherwise reduce the retain rate over time.

4.2 CIFAR

CIFAR10 and CIFAR100 datasets are collections of 50K training and 10K testing RGB images
from 10 and 100 different image categories. Every instance consists of 32 × 32 RGB pixels. We
preprocess all images by subtracting the per-pixel mean computed over all training set, then with ZCA
whitening as suggested in Srivastava et al. (2014). No data augmentation is used. The neural network
architecture we evaluate on uses three convolutional layers, each of which followed by a max-pooling
layer. The convolutional layers have 96, 128, and 256 filters respectively. Each convolutional layer
has a 5×5 receptive field applied with a stride of 1 pixel, and each max-pooling layer pools from 3×3
pixel region with strides of 2 pixels. These convolutional layers are followed by two fully-connected
layer having 2048 hidden units each.

Model CIFAR10 CIFAR100
Convolutional neural network 18.01 50.28
+ Dropout in fully-connected 17.05 45.81

+ VARDROP 16.85 45.47
+ SPARSEVARDROP 17.87 45.74
+ Rademacher 16.89 45.35

+ Dropout in all layers 15.16 41.00
+ VARDROP 15.03 39.15
+ SPARSEVARDROP 15.87 42.67
+ Rademacher 13.81 38.63

Table 2: Classification error on CIFAR datasets.

Table 2 summarizes the performance
of our proposed models against other
baselines. We initialize dropout rates
settings with {0.9, 1.0} for input lay-
ers, {0.75, 1.0} for convolutional lay-
ers and {0.5, 1.0} for fully-connected
layers. Similary to the MNIST evalu-
ation, we find setting the correspond-
ing retaining probabilities for input
layers, convolutional layers and fully-
connected layers to 0.9, 0.75 and 0.5
respectively yields best performance
under all models. We initialize the
learning rate to 0.001 and decay it exponentially every {200, 300, 400} epochs.

Figure 4 illustrates the changes in retain rates for both input and hidden layers under Rademacher
regularization with 0.1 regularization weight. The network contains two convolution layers with 32
and 64 convolutional filters followed by one fully-connected layer with 1024 neurons. All hidden
units use ReLU activation functions. The retain rates were initialized to 0.9 for input layer, 0.75 for
convolutional layer and 0.5 for fully-connected layer. The learning rate is 0.001 and exponentially
decayed by half after every 300 epochs. Similar to MNIST dataset, we observe the retain rates for all
layers are diffused throughout training process, and finally converged towards a unimodal distribution.
However, unlike MNIST dataset, we do not see similar pattern for retain rates of input layer. This is
mainly due to the nature of dataset, such that CIFAR10 images spread over the entire range, hence
all pixels are potentially informational to the classification process. This again demonstrates that
the Rademacher regularizer is able to distinguish the informational pixels and retain them during
training.

4.3 TEXT CLASSIFICATION

In addition, we also compare our proposed approach on text classification datasets—SUBJ and IMDB.
SUBJ is a dataset containing 10K subjective and objective sentences (Pang & Lee, 2004) with nearly
14.5K vocabulary after stemming. All subjective comments come from movie reviews expressing
writer’s opinion, whereas objective sentences are from movie plots expressing purely facts. We
randomly sample 20% from the collections as test data, and use other 80% for training and validation.
IMDB is a collection of movie reviews from IMDB website, with 25K for training and another 25K
for test (Maas et al., 2011), containing more than 50K vocabulary after stemming. It contains an
even number of positive (i.e., with a review score of 7 or more out of a scale of 10) and negative (i.e.,
with a review score of 4 or less out of 10) reviews. The dataset has a good movie diversity coverage
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Figure 4: Changes in retain rates with Rademacher regularization on CIFAR10 dataset. Top-Left:
changes in retain rate histograms for input layer (32× 32× 3 RGB pixels) through training. Top-
Middle: changes in retain rate histograms for first convolutional layer (32× 15× 15 units) through
training process. Top-Right: changes in retain rate histograms for second convolutional layer
(64× 7× 7 units) through training process. Bottom-Left: changes in retain rate histograms for fully-
connected layer (1024 ReLU units) through training process. Bottom-Middle: sample images from
CIFAR10 dataset. Bottom-Right: retain rates for corresponding input pixels in both superposition and
individual RGB channels upon model convergence. Unlike MNIST datasets, there is no clear pattern
from the retain rates out of these channel pixels, since they are all informational towards prediction.

with less than 30 reviews per movie. For each sentence or document in these datasets, we normalize
it into a vector of probability distribution over all vocabulary.

Table 3 summarizes the performance of our proposed models against other baselines. We initialize
dropout rates settings with {0.8, 1.0} for input layers and {0.5, 1.0} for fully-connected layers.
Similarly, by setting the corresponding retaining probabilities for input layers and fully-connected
layers to 0.8 and 0.5 respectively, the model often yields the best performance. We use a constant
learning rate of 0.001, as well as an initialization learning rate of 0.01 and decay it by half every
{200, 300, 400} epochs. We notice that overall the improvement of dropout is not as significant as
MNIST or CIFAR datasets.

Model SUBJ IMDB
Multi-layer Perceptron 11.50 12.18
+ Dropout 10.95 12.02
+ VARDROP 10.45 11.82
+ SPARSEVARDROP 10.35 11.97
+ Rademacher 10.15 11.83

Table 3: Classification error on text dataset.

Figure 5 illustrates the changes in retain rates for both
input and hidden layers under Rademacher regular-
ization with 0.005 regularization weight on IMDB
dataset. The network contains one hidden layer of
1024 ReLU units. The retain rates were initialized
to 0.8 for input layer and 0.5 for hidden layer. The
learning rate is 0.01 and decayed by half after every
200 epochs. Similar to other datasets, we observe the
retain rates for all layers are diffused slightly upon
model convergence, and in particularly the retain rates for input layer demonstrate interesting feature
patterns of the data.

Recall that the task for IMDB dataset is to classify movie reviews into negative or positive labels.
Generically speaking, adjectives are more expressive than nouns or verbs in this scenario, and our
findings seems to be consistent with this intuition, i.e., yield high retain rates. List of the most
indicative features include “wonder(ful)”, “best”, “love”, “trash”, “great”, “classic”, “recom-
mend”, “terribl(e)”, “perfect”, “uniqu(e)”, ““fail”, “amaz(ing)”, “fine”, “supris(e)”, “worst”,

“silli(y)”, “flawless”, “wast(e)”, “dull” and “ridicul(ous)”. As discussed above, nouns or verbs are
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more often used to describe the movie plot, hence are less indicative, i.e., with smaller retain rates.
Some of the word features with low retaining probability—hence, possibly less indicative—include

“year”, “young”, “possibl(e)”, “happen”, “dead”, “music”, “flick”, “shot”, “oscar”, “kill”, “spent”,
“pretti(y)”, “say”, “review”, “support”, “anim(ation)”, “actual”, “call”, “cut”, and “role”. One
interesting observation is that we find the word “oscar” is also in the list of less informative features,
which implies movie reviews and Academy Awards are not necessarily correlated.

In addition, we also include a list of popular and possibly unique named entities that are relevant
to movie industry, including “baldwin”, “niro”, “spacey”, “depp”, “downey”, “pitt”, “pacino”,

“marilyn”, “hepburn”, “craig”, “dench”, “sammo”, “clooney”, “kidman”, “mccarthi”, “kermit”,
“godzilla”, “nimoy”, “shawshank”, “yokai”, “emraan”, “kurosawa”, “spielberg”, “cameron”,
“pacino”, “jackson”, “eastwood”, “allen”, and “verhoeven”. We also notice interesting pattern
on this list. For example, some actors (e.g., “baldwin” and “kidman”, etc.) and directors (e.g.,

“kurosawa” and “eastwood” etc.), yield high retain rates shortly after initial optimization. The retain
rates of actors like “downey” or “spacey”, and directors like “spielberg” or “cameron” slightly
increase or remain similar over time . The word “pitt”,2 however, yields a declined retain rates
throughout training, which suggests a less indicative feature for review classification. Note that higher
retain rate means the corresponding features are more indicative in classifying IMDB reviews into
positive or negative labels, i.e., no explicit association with the label itself.

5 CONCLUSION

Imposing regularizaiton for a better model generalization is not a new topic. However we tackle
the problem for the dropout neural network regularization in a different way. The theoretical upper
bound we proved on the Rademacher complexity facilitates us to directly incorporate the dropout
rates into the objective function. In this way the dropout rate can be optimized by block coordinate
descent procedure with one consistent objective. Our empirical evaluation demonstrates promising
results and interesting patterns on adapted retain rates.

In the future, we would like to investigate the sparsity property of the learnt retain rates to encourage
a sparse representation of the data and the neural network structure (Wen et al., 2016), similar to the
sparse Bayesian models and relevance vector machine (Tipping, 2001). We would also like to explore
the applications of deep network compression (Han et al., 2015a; Iandola et al., 2016; Ullrich et al.,
2017; Molchanov et al., 2017; Louizos et al., 2017). In addition, one other possible research direction
is to dynamically adjust the architecture of the deep neural networks (Srinivas & Babu, 2015; Han
et al., 2015b; Guo et al., 2016), and hence reduce the model complexity via dropout rates.
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6 APPENDIX

6.1 PROOF OF THEOREM 3.1

Proof. In the analysis of Rademacher complexity, we treat the functions fed into the neurons of
the lth layer as one function class Fl = f l(x;w:l). Here again we are using the notation w:l =
{w1, . . . ,wl}, and w = w:L. As a consequence ∀j, f lj(x;wl) ∈ Fl.

Note here fL(x;W ) used in section 3 is a vector, but fL(x;w) used in this subsection is a scalar. The
connection between fL(x;W ) and fL(x;w) is that each dimension of fL(x;W ) is viewed as one
instance coming from the same function classs fL(x;w). Similar ways of proof have been adopted
in Wan et al. (2013).

To simplify our analysis, we follow Wan et al. (2013) and reformulate the cross-entropy loss on top
of the softmax into a single logistic function

loss(fL(x;W),y) = −
∑
j yj log e

fL
j

(x;W)∑
j e

fL
j

(x;W)
.

The function class fed into the neurons of the lth layer f l(x;w:l) admits a recursive expression

f l(x;w:l, r:(l−1)) =
∑
k

φ(f l−1k (x;w:l−1, r:l−2))rl−1k wlk (4)

f l(x;w:l; θ:(l−1)) = Er:(l−1)f l(x;w:l, r:(l−1)) (5)

Given the neural network function (1) and the logistic loss function l is 1 Lipschitz, by Contraction
lemma (a variant of the lemma 26.9 on page 381, Chapter 26 of (Shalev-Shwartz & Ben-David,
2014)), the empirical Rademacher complexity of the loss function is bounded by

RS(l ◦ fL) =
1

n
Eσmaxw

∑
i

σil(f
L(xi;w), yi)

≤ k

n
Eσmaxw

∑
i

σif
L(xi;w) = kRS(fL) (6)
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Note the empirical Rademacher complexity of the function class of the Lth layer, i.e., the last output
layer, is

RS(fL) =
1

n
E{σi}

[
sup
w

∑
i

σif
L(xi;w)

]
(7)

To prove the bound in a recursive way, let’s also define a variant of the Rademacher complexity with
absolute value inside the supremum:

R̃S(f) =
1

n
E{σi} sup

w

∣∣∣∣∣∑
i

σif(xi;w)

∣∣∣∣∣ (8)

Note here R̃S(f) is not exactly the same as the Rademacher complexity defined before in this paper.
And we have

RS(fL) ≤ R̃S(fL) (9)

Now we start the recursive proof. The empirical Rademacher complexity (with absolute value inside
supremum) of the function class of the lth layer is

R̃S(f l) =
1

n
E{σi} sup

w

∣∣∣∣∣∑
i

σif
l(xi;w)

∣∣∣∣∣
=

1

n
E{σi} sup

w

∣∣∣∣∣∑
i

σiEr:l−1f l(xi;w, r)

∣∣∣∣∣ (10)

Let

R̂S(f l) = Er:l−1

[
1

n
E{σi} sup

w

∣∣∣∣∣∑
i

σif
l(xi;w, r)

∣∣∣∣∣
]

(11)

By the calculous of Rademacher complexity,

R̃S(fL) = R̃S(Er:l−1fL(x;w, r)) = R̃S(
∑
r

p(r)fL(x;w, r)) ≤
∑
r

p(r)R̃Sf
L(x;w, r) = R̂S(fL)

(12)

Now we have

R̂S(f l) = Er:l−1

[
1

n
E{σi} sup

w

∣∣∣∣∣∑
i

σif
l(xi;w, r)

∣∣∣∣∣
]

= Er:l−1

 1

n
E{σi} sup

w

∣∣∣∣∣∣
∑
i

σi
∑
j

wljr
l−1
j φ(f l−1j (xi;w

:l−1, r:l−2))

∣∣∣∣∣∣
 (13)

Let gl−1j (x;w:l−1, θ:(l−2)) = φ
(
f l−1j (xi;w

:l−1, r:l−2)
)
, then

R̂S(f l) ≤ Er:l−1

 1

n
E{σi} sup

w:l−1

sup
wl

∣∣∣∣∣∣
∑
i

σi
∑
j

wljr
l−1
j gl−1j (xi;w

:l−1, r:(l−2))

∣∣∣∣∣∣
 (14)
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According to the assumption, p ≥ 1, q = p/(p − 1), and ‖wl‖p ≤ Bl, from equation (14), by
Holder’s inequality, we have ∀l ∈ {2, . . . , L}

R̂S(f l) ≤ Er:l−1

{
1

n
E{σi}

[
sup

‖wl‖p≤Bl

|wl � rl−1|1 sup
w:l−1

sup
j
|
∑
i

σig
l−1
j (xi;w

:l−1, r:(l−2))|

]}

≤ Er:l−1


 sup
‖wl‖p≤Bl

∑
j

rl−1j |w
l
j |

 1

n
E{σi} sup

w:l−1

sup
j

∣∣∣∣∣∑
i

σig
l−1
j (xi;w

:l−1, r:(l−2))

∣∣∣∣∣


≤ Er:l−1

{(
sup

‖wl‖p≤Bl

‖rl−1‖q‖wl‖p

)
R̃S(gl−1(x;w:l−1, r:l−2))

}
≤ Bl‖θl−1‖1/q1 Er:l−2

[
R̃S(gl−1(x;w:l−1, r:l−2))

]
(15)

In the last inequality above we used Jensen’s inequality since q ≥ 1 as well as the fact that the dropout
random variable rj is binary (so rqj = rj).

Suppose the activation function φ(·) used in the neural network is 1-Lipschitz, and φ(0) = 0 (for
example, the RELU function). Then by the Ledoux-Talagrand contraction lemma, ∀l ∈ {1, . . . , L−
1}, given r,

R̃S(gl−1(x;w:l, r:l−1)) ≤ 2R̃S(f l−1(x;w:l−1, r:l−2)). (16)

From equation (16) and (15) we have

R̂S(f l) ≤ 2Bl‖θl−1‖1/q1 R̂S(f l−1) (17)

For the first layer, i.e., the feature layer with dropout but without activation function, if |w1|p ≤ B1,
then

R̂S(f1(x;w1)) = Er0

{
1

n
E{σi}

[
sup

‖w1‖p≤B1

∣∣∣∣∣
n∑
i=1

σi < w1, xi � r0 >

∣∣∣∣∣
]}

= Er0

 1

n
E{σi}

 sup
‖w1‖p≤B1

∣∣∣∣∣∣
n∑
i=1

σi
∑
j

w1
jxijr

0
j

∣∣∣∣∣∣


= Er0

 1

n
E{σi}

 sup
‖w1‖p≤B1

∣∣∣∣∣∣
∑
j

w1
j r

0
j

n∑
i=1

σixij

∣∣∣∣∣∣


≤ Er0
{

1

n
E{σi}

[
sup

‖w1‖p≤B1

‖w1 � r0‖1‖
n∑
i=1

σixi‖∞

]}

≤ B1‖θ0‖1/q1

n
E{σi}

[
‖

n∑
i=1

σixi‖∞

]
(18)

By Lemma 26.11 on page 383, Chapter 26.2 of Shalev-Shwartz & Ben-David (2014), we know the
last term in (18) is bounded by

1

n
E{σi}

[
‖

n∑
i=1

σixi‖∞

]
≤ max

i
‖xi‖∞

√
2 log(2d)/n.

Thus we get

R̂S(f1(x;w1)) ≤ max
i
‖xi‖∞B1‖θ0‖1/q1

√
2 log(2d)

n
(19)

Combining the inequalities (6), (9), (15), (16), and (19), we have

RS(l ◦ fL) ≤ k2L
√

2 log(2d)

n
max
i
‖xi‖∞

(
ΠL
l=1B

l‖θl−1‖1/q1

)
. (20)
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6.2 GENERALIZATION BOUND ON THE DROPOUT NEURAL NETWORKS

Here we need to define truncated cross entropy loss function:

l̃ ◦ fL = l̃(fL, (x,y)) = min(loss(fL(x;W,θ),y), Cl) (21)

where Cl is a constant. Note with the truncation, the cross entropy loss is still 1-Lipschitz so the
empirical Rademacher complexity bound still holds for the truncated loss l̃(fL(x;W,θ),y).

Theorem 6.1. For the dropout neural network defined in section (3), if truncated cross entropy loss l̃
(21) is used, then ∀δ ≥ 0, with probability at least 1− 2δ, ∀l̃ ◦ fL :

E(x,y)∼D(l̃(fL(x;W,θ), y) ≤ 1

n

∑
i

l̃(fL(xi;W,θ),yi) +RS(l̃ ◦ fL) + 3Cl
√

1/(2nδ) (22)

Note here the empirical Rademacher complexity for the bounded loss function RS(l̃ ◦ fL) admits
the same bound as the empirical Rademacher complexity for the unbounded cross entropy loss
RS(l ◦ fL).

6.3 TOWARDS AN UNIFIED VIEW OVER RADEMACHER REGULARIZATION?

In fact, adding a Rademacher related regularizer, though not investigated much, is not new at least for
linear functions.

It is well known (Shalev-Shwartz & Ben-David, 2014) that the empirical Rademacher complexity of
the linear class

H2 = {x→ 〈w, x〉 : ‖w‖2 ≤ B2}

is bounded by
RS ≤ max

i
‖xi‖2B2/

√
n.

Note the l2 loss function is 2-Lipschtz. In this way, we may interpret the regularizer in the ridge
regression related an upper bound for the empirical Rademacher complexity of the linear function
class.

Similarly for the linear class

H1 = {x→ 〈w, x〉 : ‖w‖1 ≤ B1},

the empirical Rademacher complexity is bounded by

RS ≤ max
i
‖xi‖∞B1

√
2 log(2d)

n
.

So the lasso problem can also be viewed as adding a Rademacher-related regularization to the
empirical loss minimization objective.

6.4 SCALES OF REGULARIZATION?

In application we do not want the regularization term to vary too much when the neural network
has different number of internal neurons. To overcome that we design some heuristics to add to the
regularizer. Note here all the scales mentioned in this section are added in a heuristic fashion. It is
purely empirical.

When p = q = 2, the regularizer is bounded by

RS(l ◦ fL) ≤ k2L
√

log(d)

n
max
i
‖xi‖∞

(
ΠL
l=1 max

j
‖Wl

j‖2‖θl−1‖
1/2
1

)
. (23)

?Note that the content in Section 6.3 and 6.4 is based purely on heuristics, and derived on an ad hoc basis.
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where Wl
j ∈ Rkl−1

is the j-th column of Wl. Suppose we use i.i.d. uniform random variable to
initialize Wl such that ∀l wlij ∼ U [−

√
6/(kl + kl+1),

√
6/(kl + kl+1)]. Considering the scales of

the maximum among the 2-norms of Wl
j , we use a scaled regularizer instead:

k2L
√

log d

n
max
i
‖xi‖∞

ΠL
l=1

maxj ‖Wl
j‖2‖θl−1‖

1/2
1

kl

√
kl + kl−1

log kl

 .

Similarly, when p =∞ and q = 1, the scaled regularizer we used is

k2L
√

log d

n
max
i
‖xi‖∞

(
ΠL
l=1‖Wl‖max‖θl−1‖1

√
kl + kl−1

kl

)
.

6.5 STABILITY OF THE DROPOUT RATES CONVERGENCE

In this sub-section we demonstrate the dropout rates convergence acrross multiple runs. We use a
neural network with one hidden layer of 1024 ReLU units to illustrate, and feed it with MNIST dataset.
We train the network for 10 different runs, with same configurations and empirical settings, except
different initializations on the network weight coefficients. Figure 6 shows the histogram of hidden
layer retain rates upon model convergence under different runs. We observe similar dropout behavior
and distribution among multiple runs upon model convergence, i.e., the histograms of the retain rates
do not diverge much across different runs in regards to different model weight initializations.

0.0 0.2 0.4 0.6 0.8 1.0
retain rates

0

1

2

3

4

5

6

# 
of

 n
eu

ro
ns

0.0 0.2 0.4 0.6 0.8 1.0
retain rates

0

1

2

3

4

5

6

7

8

# 
of

 n
eu

ro
ns

Figure 6: Histograms of the hidden layer dropout retain rates upon model convergence on 10 different
runs under different Rademacher p =∞, q = 1 regularization settings. The neural network contains
one hidden layer of 1024 ReLU units, and is trained on MNIST dataset with different regularizer
weight of 1e−3 (Left) and 1e−4 (Right). We train the neural network for 200 epochs, with a minibatch
size of 100, initial learning rate of 0.01, and decay it by half every 40 epochs. The experiments are
run with same configurations and experimental settings, except different initializations on the network
weight coefficients.
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